Evaluating and comparing performance of feature combinations of heart rate variability measures for cardiac rhythm classification

نویسندگان

  • Alan Jovic
  • Nikola Bogunovic
چکیده

Automatic classification of cardiac arrhythmias using heart rate variability (HRV) analysis has been an important research topic in recent years. Explorations reveal that various HRV feature combinations can provide highly accurate models for some rhythm disorders. However, the proposed feature combinations lack a direct and carefully designed comparison. The goal of this work is to assess the various HRV feature combinations in classification of cardiac arrhythmias. In this setting, a total of 56 known HRV features are grouped in eight feature combinations. We evaluate and compare the combinations on a difficult problem of automatic classification between nine types of cardiac rhythms using three classification algorithms: support vector machines, AdaBoosted C4.5, and random forest. The effect of analyzed segment length on classification accuracy is also examined. The results demonstrate that there are three combinations that stand out the most, with total classification accuracy of roughly 85% on time segments of 20 seconds duration. A simple combination of time domain features is shown to be comparable to the more informed combinations, with only 1–4% worse results on average than the three best ones. Random forest and AdaBoosted C4.5 are shown to be comparably accurate, while support vector machines was less accurate (4–5%) on this problem. We conclude that the nonlinear features exhibit only a minor influence on the overall accuracy in discerning different arrhythmias. The analysis also shows that reasonably accurate arrhythmia classification lies in the range of 10 to 40 seconds, with a peak at 20 seconds, and a significant drop after 40 seconds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heart Rate Variability Classification using Support Vector Machine and Genetic Algorithm

Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...

متن کامل

The Effects of Heart Rate Variability on Reading Performance among Iranian EFL Learners

Psychophysiological studies and MRI neuro-imaging findings provide evidence that heart rate variability (HRV) which is in control of our emotions affects our brain cognitive centers. It has been shown that coherent heart-brain interaction can change the pattern of the afferent cardiac input that is sent to the brain. For this purpose, the Institute of HeartMath (IHM) has proposed a kind of biof...

متن کامل

Random Forest-Based Classification of Heart Rate Variability Signals by Using Combinations of Linear and Nonlinear Features

The goal of this paper is to assess various combinations of heart rate variability (HRV) features in successful classification of four different cardiac rhythms. The rhythms include: normal, congestive heart failure, supraventricular arrhythmia, and any arrhythmia. We approach the problem of automatic cardiac rhythm classification from HRV by employing several features’ schemes. The schemes are...

متن کامل

Combination of Empirical Mode Decomposition Components of HRV Signals for Discriminating Emotional States

Introduction Automatic human emotion recognition is one of the most interesting topics in the field of affective computing. However, development of a reliable approach with a reasonable recognition rate is a challenging task. The main objective of the present study was to propose a robust method for discrimination of emotional responses thorough examination of heart rate variability (HRV). In t...

متن کامل

Automatic classification of normal and abnormal cardiac sounds by combining features based on wavelet transform and capstral coefficients extracted from PCG signals (Research Article)

Cardiac sounds are produced by the mechanical activities of the heart and provide useful information about the function of the heart valves. Due to the transient and unstable nature of the heart's sound and the limitation of the human hearing system, it is difficult to categorize heart sound signals based on what is heard from a stethoscope. Therefore, providing an automated algorithm for prima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomed. Signal Proc. and Control

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012